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• A centrality measure encoding the centrality of a node’s neighborhood is proposed.
• The neighborhood centrality outperforms degree and coreness in ranking spreaders.
• A saturation effect of the neighborhood is discovered.
• Considering the 2-step neighborhood of a node balances the cost and performance.
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a b s t r a c t

Identifying themost influential spreaders is an important issue in controlling the spreading
processes in complex networks. Centrality measures are used to rank node influence in a
spreading dynamics. Herewepropose a node influencemeasure based on the centrality of a
node and its neighbors’ centrality,whichwe call the neighborhood centrality. By simulating
the spreading processes in six real-world networks, we find that the neighborhood
centrality greatly outperforms the basic centrality of a node such as the degree and coreness
in ranking node influence and identifying the most influential spreaders. Interestingly, we
discover a saturation effect in considering the neighborhood of a node,which is not the case
of the larger the better. Specifically speaking, considering the 2-step neighborhood of nodes
is a good choice that balances the cost and performance. If further step of neighborhood
is taken into consideration, there is no obvious improvement and even decrease in the
ranking performance. The saturation effect may be informative for studies that make use
of the local structure of a node to determine its importance in the network.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Identifying the most influential spreaders is an important step in promoting the adoption of new ideas, products and
innovations, and preventing the epidemic disease frombeing pervasive. Centralitymeasures are used to rank the importance
of a node in a network, such as degree [1], closeness centrality [2], betweenness centrality [3], PageRank centrality [4],
LeaderRank centrality [5,6], eigenvector centrality [7], dynamic-sensitive centrality [8,9] and coreness centrality [10]. It
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contains the idea that there is a relationship between the topological position of a node in the network and its influence and
capacity in a spreading dynamics. Among them, degree is the simplest way and is most widely used, but it is based only on
the local connections of a node. Subsequent research pointed out that the coreness of node kS as identified by the k-shell
decomposition [11] is a more accurate way in ranking node influence [10], which has a low computational complexity of
O(N + E) [12], where N is the network size and E is the number of edges. In addition, the kS index has a good robustness,
which means that the relative ranking of the kS value for the same node remains unchanged when the network structure is
incomplete, missing even up to 50% of the edges [10].

It is pointed out that the importance of a node is not determined solely by its direct connections, but also depends on
the connections of its neighbors [13]. Research results show that ranking measures by considering the neighborhood of a
node are more accurate in identifying the spreading influence of nodes [14–18]. For example, by considering the number of
neighbors within 4-step from the node, a local centrality measure is proposed which outperforms the centrality of degree
and betweenness [14]. In a recent work, a gravity centrality is proposed which uses the gravity formula to calculate the con-
tribution of neighbors to the centrality of the considered node. This method can effectively identify influential spreaders in
real-world networks and artificial networks [18]. The sumof the coreness of the nearest neighbors of a node is a better indica-
tor of node spreading influence than the coreness [19]. In a ranking algorithm of iterative resource allocating, by considering
the centrality of neighbors in a resource allocating process, the final resource a node obtains is used to rank its spreading
capability. This method shows a great improvement over degree, closeness, and betweenness [20]. In addition, there are
works based on counting the number of possible infection paths [21,22] in the neighborhood to determine node influence.

Intuitively, the larger neighborhood is taken into consideration, the more accurately we can predict the spreading out-
come of a node. However, in the research of spreading phenomena in social networks, such as the spread of smoking, alcohol
consumption, happiness, health screening, it is discovered that on average there is a significant relationship in behaviors
between a node and its direct neighbors (1-step neighbor), and up to the neighbors’ neighbors’ neighbors (3-step neigh-
bor), which is called the three degree of separation [23]. This implies an influence range from the spreading origin to the
affected population. In addition, it is a challenging task to collect the complete network information in some real-world
networks [15], due to the large amount and the temporal and spatial change of the data, such as Twitter and Facebook.
Analyzing a large neighborhood seems unfeasible in such networks.

Given the effect of neighborhood, in this paper we first propose a neighborhood centrality based on the centrality of a
node and its neighbors within multiple steps. Specifically, we take the degree and coreness as the benchmark centrality
to study the performance of the neighborhood centrality when 1–4 steps of neighbors are considered. We find that in
general the neighborhood centrality outperforms the centrality of the node. Furthermore, in most of the studied networks,
considering the neighborhood within 2-step will result in a good neighborhood centrality. When the considered steps is
greater than 2, the improvement of ranking accuracy is not obvious and even negative. This means a saturation effect
of the neighborhood on a node. Discovering the saturation effect is meaningful in that when we consider the effect of
neighborhood, taking the 2-step neighborhood into account will balance the cost and effect.

2. Methods

In this part,we first introduce the centralitymeasures of degree and coreness,which are used as the benchmark centrality.
Then we propose the neighborhood centrality based on the degree or coreness of a node and its neighbors. Finally we
describe the susceptible–infected–recovered (SIR) model used in the spreading process, and give a brief description of the
data sets used in the study.

2.1. Degree centrality

The degree centrality of a node i is defined as ki =


j∈G\i aij, where j is a node in the network G, and aij = 1 if there is a
link between node i and node j, otherwise aij = 0. Degree is the simplest centralitymeasure in quantifying node importance.
The larger the degree, the more neighbors the node is able to influence directly.

2.2. Coreness centrality

The coreness centrality of a node is obtained in the k-shell decomposition process. The k-shell decomposition method
is used to decompose the network into hierarchically ordered shells from the core to the periphery. Initially, nodes with
degree k = 1 are removed from the network together with their links. After removing all nodes with k = 1, there may
appear some nodes with only one link left. We continue to remove these nodes until there is no node with one link left in
the network. The removed nodes are assigned with an index ks = 1. Next, nodes with degree k ≤ 2 are removed in a similar
way and assigned with an index ks = 2. The pruning process continues removing higher shells until all nodes are removed.
As a result, each node is assigned with a ks value, which is called the coreness of a node. The coreness reflects the location
importance of a node in the network. A large ks means a core position in the network, while a small ks defines the periphery
of the network. Coreness centrality is considered to be a better measure than degree to identify the influential spreaders in
a network [10,24].



Y. Liu et al. / Physica A 452 (2016) 289–298 291

Table 1
Characteristics of the real-world networks studied in this work. These characteristics include number of nodes (N), number of edges (E), average degree
(⟨k⟩), degree assortativity (r), clustering coefficient (C), epidemic threshold (λc ), infection probability used in the SIR spreading in themain text (λ), average
shortest distance of the network (d), average spreading radius (dR) (see its definition in the main text).

Network N E ⟨k⟩ r C λc λ d dR

Email 1 133 5451 9.6 0.078 0.220 0.06 0.08 3.61 2.22
CA-Hep 8638 24806 5.7 0.239 0.482 0.08 0.12 5.95 2.93
Hamster 2 000 16097 16.1 0.023 0.540 0.02 0.04 3.59 2.04
PGP 10680 24340 4.6 0.240 0.266 0.06 0.19 7.49 3.69
Astro 14845 119652 16.1 0.228 0.670 0.02 0.05 4.8 2.95
Router 5 022 6258 2.5 −0.138 0.012 0.08 0.27 6.45 3.91

2.3. Neighborhood centrality

We propose a new centrality measure called neighborhood centrality that encodes the centrality of a node and its
neighborhood. We consider that the importance of a node depends not only on its direct neighbors (1-step neighbors),
but also on its 2-step and even more steps of neighbors. A 2-step neighbor of a node is a direct neighbor of 1-step neighbor.
Similarly, a n-step neighbor is a direct neighbor of (n − 1)-step neighbor. The more steps, the larger range of neighborhood
is taken into consideration. Meanwhile, the weight of the neighbor’s influence may be different. For example, when an
infection starts at a seed node, the probability of a neighbor being infected decreases with the increase of its distance from
the spreading origin. That is the larger distance, the smaller effect the spreading origin may have on the neighbor. Based on
these assumptions, we define the neighborhood centrality of node i encoding the centrality of i and its n-step neighbors as

Cn
i (θ) = θi + a


j∈Γi

θj + a2

l∈Γj\i

θl + a3


m∈Γl\j

θm + · · · + an


s∈Γs−1\x

θs, (1)

where θ is the benchmark centrality, n is the step of neighbors taken into consideration, a is an adjustable parameter that
ranges in [0, 1], and Γi is the set of nearest neighbors of node i. In the last item of the equation, s is the direct neighbor
of a node o which is the (s − 1)-step neighbor of the considered node i, while the slashed node x is the direct neighbor of
node o but is the (s − 2)-step neighbor of i. Here we use degree and coreness as the benchmark centrality, and consider a
neighborhood of up to 4-step. This equationmeans that the neighborhood centrality encodes the centrality of a node and its
neighbors. In addition, the neighbors’ effect decreases with the increase of their distance from the origin node. In this work,
we first set a = 0.2 in Eq. (1) and then discuss its impact on the performance of neighborhood centrality when a varies.

2.4. The SIR model

We use the susceptible–infected–recovered (SIR) spreading model [25,26] to simulate the spreading processes on
networks and record the spreading efficiency for each node. We then compare the performance of the neighborhood
centrality with degree and coreness in ranking the spreading efficiency of nodes and identifying influential spreaders. In the
SIR model, a node has three possible states: S (susceptible), I (infected) and R (recovered). Initially, a single node is infected
and all others are susceptible. The infection spreads from the seed node to other nodes in the network through edges. At
each time step, infected nodes contact all their direct neighbors, and then recover (change to R state) with probabilityµ. For
simplicitywe setµ = 1. Recovered nodeswill not be infected anymore and remain the state of recovered until the spreading
stops. Susceptible individuals become infected with probability λ when they are contacted by an infected neighbor. The
spreading process stops when there is no infected node in the network. The proportion of recovered nodes when spreading
stops is considered as the spreading efficiency, or spreading capability, of the origin node.While the final infected population
may vary when the infection probability λ varies, authors of Ref. [27] pointed out that the relative ranking of the nodes’
spreading efficiency remains invariant under awide range of infection probabilities. In our simulations,we chose an infection
probability λ > λc , where λc = ⟨k⟩/(⟨k2⟩−⟨k⟩) is the epidemic threshold of the network determined by the heterogeneous
mean-field method [28]. Under this infection probability, the final infected population is above 0 and reaches a finite but
small fraction of the network size, in the range of 1%–20% [10] for most nodes as spreading origins. We realize the spreading
process for 100 times and use the average spreading efficiency of a node as its spreading efficiency M . We also discuss the
performance of our proposed method under a mediate range of the infection probability in our result part.

2.5. Data sets

We study the performance of the neighborhood centrality on six real-world networks. The six real-world networks
studied are: (1) Email (e-mail network of University at Rovira i Virgili, URV) [29]; (2) CA-Hep (Giant connected component
of collaboration network of arXiv in high-energy physics theory) [30]; (3) Hamster (friendships and family links between
users of the website) [31]; (4) PGP (an encrypted communication network) [32]; (5) Astro physics (collaboration network of
astrophysics scientists) [33]. (6) Router (the router level topology of the Internet, collected by the Rocketfuel Project) [34].
The characteristics of the studied networks are listed in Table 1.



292 Y. Liu et al. / Physica A 452 (2016) 289–298

Fig. 1. The imprecision of centrality as a function of p for six real-world networks. The imprecisions of k (black squares), C1(k) (red circles), C2(k) (blue
uptriangles), C3(k) (green downtriangles), and C4(k) (purple lefttriangles) are compared in each network. p is the proportion of nodes calculated, ranging
from 0.01 to 0.2. In all studied networks, the lowest imprecision can be achieved within 2-step neighborhood.

3. Results

We study the performance of neighborhood centrality in identifying influential spreaders by considering the node’s
neighborhood of 1-step, 2-step, 3-step and 4-step, respectively, which are C1(θ), C2(θ), C3(θ), C4(θ) as defined in Eq. (1).
We use the imprecision function proposed in Ref. [10] to quantify the performance of centrality measures in identifying
influential spreaders. The imprecision function is defined as

ε(p) = 1 −
M(p)
Meff (p)

, (2)

where p is the fraction of network size N (p ∈ [0, 1]).M(p) is the average spreading efficiency of pN nodes with the highest
centrality, and Meff (p) is the average spreading efficiency of pN nodes with the highest spreading efficiency. This function
quantifies how close to the optimal spreading is the average spreading of the pN nodes with the highest centrality. The
smaller the ε value, the more accurate the centrality is a measure to identify the most influential spreaders.

Here we compare the imprecision of k with C1(k), C2(k), C3(k) and C4(k), as well as the imprecision of kS with C1(kS),
C2(kS), C3(kS) and C4(kS), as shown in Figs. 1 and 2 respectively. In Fig. 1, we can see that for all studied networks, the
lowest imprecision can be achieved at C1(k) or C2(k). In Email and CA-Hep, the neighborhood centrality outperforms the
degree centrality at most p values, and the imprecisions are very close under all steps considered. In Hamster and PGP, the
imprecision of C1(k) and C2(k) are very close, and are lower than k, C3(k) and C4(k). In Astro the imprecision of C1(k) is the
lowest, while in Router the imprecision of C2(k) is the lowest. In all, the C(k) outperforms degree k, and a best neighborhood
centrality is achievedwhen considering the neighbors in 1-step or 2-step for all the studied networks.When a larger step of 3
or 4 is considered, the performance of neighborhood even decreases. This demonstrates a saturation effectwhen considering
the neighborhood of a node in determining its centrality.

When using the kS as the benchmark centrality, a similar saturation effect emerges as shown in Fig. 2. In Email, CA and
Hamster, the neighborhood centrality outperforms the coreness centrality, and are very close under all steps considered. In
PGP, the imprecision of C1(kS) and C2(kS) are very close, and in general lower than that of kS , C3(kS) and C4(kS). In Astro,
the imprecision of C2(kS), C3(kS) and C4(kS) are very close and smaller than kS and C1(kS), except some p values. In Router,
C2(kS) and C3(kS) have the lowest imprecision performance. In general, the C(kS) outperforms kS and a best performance
can be achieved when considering the neighborhood within 2-step.

The imprecision function demonstrates the improved performance of neighborhood centrality in identifying the most
influential spreaders. To evaluate the ranking capability of the topology-based neighborhood centrality on the spreading
efficiency of nodes, we use the Kendall’s tau correlation coefficient [35]. The Kendall’s tau correlation coefficient is used to
measure the ranking correlation of a same set in two ranking lists. It counts the number of concordant ranking pairs and the
number of discordant ranking pairs in the two ranking lists. The correlation coefficient is defined as

τ =


i<j

sgn[(xi − xj)(yi − yj)]

1
2N(N − 1)

, (3)
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Fig. 2. The imprecision of centrality as a function of p for six real-world networks. The imprecisions of kS (black squares), C1(kS) (red circles), C2(kS) (blue
uptriangles), C3(kS) (green downtriangles), and C4(kS) (purple lefttriangles) are compared in each network. p is the proportion of nodes calculated, ranging
from 0.01 to 0.2. In all studied networks, the lowest imprecision can be achieved within 2-step neighborhood.

where sgn(x) is a sign function, which returns 1 if x > 0,−1 if x < 0, and 0 if x = 0. HereN is the number of nodes in the list.
xi and xj is the rank of node i and node j in ranking list 1, while yi and yj is the rank of node i and node j in ranking list 2. If node
i and node j have a concordant rank in ranking list 1 and 2, (xi−xj)(yi−yj) > 0. If node i and node j have a discordant rank in
ranking list 1 and 2, (xi − xj)(yi − yj) < 0. If node i and node j have a same rank in ranking list 1 and 2, (xi − xj)(yi − yj) = 0.
We take the topology-based ranking, that is the centrality measure, as ranking list 1 and the spreading-based ranking, that
is the simulated spreading efficiency of nodes, as ranking list 2, and calculate the correlation coefficient. A large correlation
coefficient implies a more concordant relation between the centrality and the spreading efficiency.

To make an explicit comparison, we calculate the improved tau ratio of the neighborhood centrality over the benchmark
centrality, which is

ηθ =


τC(θ) − τθ

τθ

τθ > 0

τC(θ) − τθ

−τθ

τθ < 0

0 τθ = 0,

(4)

where θ is the benchmark centrality of k and kS , τC(θ) is the correlation coefficient between the neighborhood centrality
and spreading efficiency, τθ is the correlation coefficient between the benchmark centrality and spreading efficiency. The
improved tau ratio measures the increase of correlation for C(k) over k (C(kS) over kS). As our main interest lies on the
most influential spreaders, when we calculate the Kendall’s tau correlation coefficient here we only take the top ranked pN
nodes by centrality into calculation. In Fig. 3, the ηk of C(k) over k for top ranked pN nodes is demonstrated, where p is in
the range of 0.1–0.5 and the C(k) is calculated from 1-step to 4-step of the neighborhood. We can see that in general, the
largest improved tau ratio is achieved within 2-step neighborhood. In Email, CA-Hep and Hamster, ηk is greater than 0, and
for most p values the largest ηk lies at 2-step. In PGP, the largest ηk lies at 1-step when the top ranked 10% and 20% nodes are
considered, while for other p values, the largest ηk lies at 2-step or 3-step. In Astro, considering the 1-step neighborhoodwill
come to the largest ηk for all p values. In Router, the largest ηk lies at 2-step or 3-step for all p values. In all, by considering
the neighborhood of 1-step or 2-step, the C(k) has an increased ranking performance over k.

Similarly, the improved tau ratio ηkS of C(kS) over kS for top ranked pN nodes is demonstrated in Fig. 4. In all networks
except PGP, the largest ηkS lies at 2-step for most of the p values. In PGP the largest ηkS lies at 1-step for p = 0.1 and p = 0.2,
and when it comes to 3-step, the correlation decreases, which is reflected by a negative ηkS . It is worth noticing that in
Email, CA-Hep and Hamster, the ηkS is very large in absolute value for p = 0.1. As indicated in Refs. [27,36], in networks
of Email, CA-Hep and Hamster, the kS fails to identify the top ranked nodes in spreading efficiency. Thus the Kendall’s tau
correlation coefficient of kS and spreading efficiency for top ranked nodes in Email, CA-Hep and Hamster is very low, and is
even negative for Email. In Email, the correlation coefficient of kS and node spreading efficiency for top 10% nodes ranked by
kS is −0.08, and the correlation coefficient of C1(kS) and the node’s spreading efficiency for top 10% nodes ranked by C1(kS)
is 0.55, thus ηkS ≈ 788% for p = 0.1. In PGP and Router, the negative value of ηkS means that the ranking correlation of C(kS)
is smaller than that of kS .
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Fig. 3. The improved tau ratio ηk of C s(k) over k as a function of s for six real-world networks. s is the step of neighborhood considered. p is the proportion
of top ranked nodes by centrality that are calculated in Kendall’s tau correlation coefficient, ranging from 0.1 to 0.5. In general, a largest increase in ranking
correlation appears at 1-step or 2-step. Although in the networks of CA-Hep, PGP and Router there is some increase of ηk at some p values for the 3-step,
the increase is relatively small.

Fig. 4. The improved tau ratio ηkS of C(kS) over kS as a function of s for six real-world networks. s is the step of neighborhood considered. p is the proportion
of top ranked nodes by centrality that are calculated in Kendall’s tau correlation coefficient, ranging from 0.1 to 0.5. In general, a largest increase in ranking
correlation appears at 1-step or 2-step. Although in the networks of Email, PGP and Router there is some increase of ηkS at some p values for the 3-step,
the increase is relatively small.

In general, in all the studied six real-world networks, the neighborhood centrality outperforms the degree centrality and
coreness centrality, and there exists a saturation effect when considering a node’s neighborhood, which mostly occurs at
2-step. As the above results are obtained when using the parameter a = 0.2 and the infection probability of λ listed in
Table 1, we test the performance under a wide range of the parameter a and the infection probability respectively, and the
results seem similar.

The saturation effect of the neighborhood centrality may be explained by the spreading radius di, which is defined as
the average shortest distance from the R nodes to the spreading origin of node i in a spreading process. Then we average
over all nodes i to get the average spreading radius dR, where node i belongs to the set of the top ranked 20% nodes by their
real spreading efficiencies, as listed in Table 1. We can see that dR is between 2 and 4, which means the final infected nodes
are on average 2–4 steps away from the spreading origin under the infection probability λ. This implies that a node usually
has an action scope. Considering neighbors within the scope will work, while considering neighbors out of this scope is less
meaningful.
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Fig. 5. The improved tau ratio ηk (ηkS ) of C
2(k) (C2(kS)) over k (kS ) as a function of parameter a in six real-world networks. The top ranked 20% nodes by

centrality are calculated in Kendall’s tau correlation coefficient (p = 0.2). In all networks except Router, ηk and ηkS are relatively stable over all a > 0. In
Router, the ηk is greater than 0 under all a > 0. The ηkS is greater than 0 at a = 0.1 and a = 0.2 and then decreases to negative values.

Fig. 6. The improved tau ratio ηk (ηkS ) of C
2(k) (C2(kS)) over k (kS ) as a function of parameter a in six real-world networks. All nodes in a network are

calculated in Kendall’s tau correlation coefficient (p = 1.0). ηk and ηkS are relatively stable under all a > 0.

Now we concentrate on the C2(k) and C2(kS), since in most cases they result in the best neighborhood centrality. We
discuss the impact of the tunable parameter a on the neighborhood centrality. We study the improved tau ratio of C2(k)
over k and C2(kS) over kS respectively at different a values. As shown in Fig. 5, we first focus on the top 20% nodes ranked by
neighborhood centrality. a = 0 corresponds to k or kS . For ηk and ηkS in Email, CA-Hep, Hamster and Astro, they are stable
under all a > 0 values. In PGP, there is some fluctuation at a = 0.2. As for Router, there is an obvious decrease at a = 0.4,
but the ηk is always above 0. When all nodes of the network are taken into consideration, the improved tau ratio η is very
stable under all a > 0.2 values, as shown in Fig. 6. This implies that taking the neighborhood into consideration is quite
effective, but the distance of neighbors is less important.

Finally, we move to explore the dependence of η on the infection probability λ. We still focus on the C2(k) and C2(kS).
We present the ηk and ηkS as a function of the infection probability, which is q times of the epidemic threshold λc , where q
ranges from 1.0 to 3.0. As indicated by authors of Refs. [10,27], the relative ranking of the spreading efficiency of nodes are
not significantly influenced by the choice of infection probability in the spreading process. In addition, the infection prob-
ability should not be too large, otherwise the topological importance of the spreading origin is diminished, since under a
large infection probability, nodes with low centrality will be influential too, because there is a large chance that the disease
spreads from the less influential spreaders to the more influential spreaders and then spreads to the large part of the net-
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Fig. 7. The improved tau ratio ηk (ηkS ) of C
2(k) (C2(kS)) over k (kS ) as a function of q times of the epidemic threshold λc . q ranges from 1.0 to 3.0. In most

cases, the η is greater than 0. There is a small negative value of ηk at large q values in Email, CA-Hep and Hamster, and a small negative value of ηkS at small
q values in Router.

Fig. 8. The improved tau ratio ηk (ηkS ) of C
2(k) (C2(kS)) over k (kS ) as a function of q times of the epidemic threshold λc . q ranges from 1.0 to 3.0. The

improved tau ratio is greater than 0 in all studied networks and infection probability, except a small negative ηk at three times the epidemic threshold in
Email.

work [10]. The result of considering the top 20% nodes ranked by centrality is shown in Fig. 7. In all networks except Router,
the η is greater than 0 at most infection probabilities. For Router, ηk is greater than 0 under all infection probabilities. The
ηkS is under 0 at some infection probabilities, but above 0 when q = 2.5 and q = 3. Although there is some fluctuation,
the ranking correlation of C(k) and C(kS) is higher than that of k and kS in most cases. When all nodes of the network are
taken into consideration, as shown in Fig. 8, the η is greater than 0 under all infection probabilities except a very small neg-
ative value at 3 times of the λc for ηk in Email network. These results validate that the neighborhood centrality has a better
performance than the benchmark centrality in a wide range of infection probability.

4. Conclusion and discussion

Centrality measures are used in identifying influential spreaders. Here we propose a new centrality measure called
neighborhood centrality, which encodes the centrality of a node and its neighbors. By simulating the SIR spreading process
on six real-world networks, we find that the proposed neighborhood centrality outperforms the centrality of degree and
coreness, which are two most widely used and simplest centrality measures, in identifying the influential spreaders.
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Furthermore, as we take the neighborhood of a node into consideration, we find that counter-intuitively, it is not the case of
themore the better. In most cases, considering the neighborhood of a node within 2-step leads to a good performance while
considering more steps of neighborhood does not obviously improve the performance or even results in some decrease.
This demonstrates a saturation effect in considering the neighborhood, which coincides with the finding of three degrees of
separation in social science [23], in the sense that ourway of considering the 2-step neighbors encodes the information of the
3-step neighbors. The saturation effect may relate to the spreading radius of nodes, which is the average shortest distance
from the infected nodes to the spreading origin. We also validate that the performance of the neighborhood centrality is
stable under all values of the introduced parameter a when a > 0, as well as under a wide range of infection probabilities,
which indicates a robustness of the proposed method.

Identifying influential spreaders is a fundamental question which has wide applications in different fields of reality, such
as epidemic control, information diffusion, idea populating, etc. Centralitymeasures such as degree, betweenness, closeness,
and eigenvector centrality are heuristicmethods used to identify influential spreaders. Besides, there are otherways of iden-
tifying influential spreaders, such as the path counting and the expected cluster degree [37]. These methods have different
computational complexity and require different network information [38]. For example, the degree centrality only needs
the local information of a node and has a low computational complexity of O(E). The betweenness and closeness centrality
need the full network information and have a high complexity of O(N3). The path counting method is time-consuming thus
it usually needs to specify a path length value. Our method of calculating the neighborhood centrality has a complexity of
O(E), given the degree and coreness of each node is known, which is relatively low. In addition, different measures may
contain distinct information. For example, the closeness centrality measures how central a node is in terms of its distance
from all other nodes, while the PageRank centrality measures the probability of a random walker visiting a node on webs.
How to choose a best indicator relies on what information we have and what kind of spreader we are searching for. As the
neighborhood centrality is based on degree and coreness, how it will perform if we use other centrality measures as the
benchmark centrality needs to be further explored. There still leaves much space to explore the influential spreaders.

There are a variety of real-world networks that consist of self-repeating patterns under different length scales, which
are called fractal networks, such as the world-wide web, the actor collaboration network, the protein–protein interaction
network and the cellular network [39]. The main feature of the fractal network is the repulsion between hub nodes, which
makes the hub nodes tend not to connect to hub nodes [40,41]. In our algorithm, hub nodes will have little contribution
to other hubs’ neighborhood centrality due to their large distance in fractal networks. Besides, nodes that directly connect
to hubs may be ranked high in this algorithm, because they will receive relatively more centrality contributions from the
hubs due to the high degree of the hubs and the short distance from them. However, fractal networks have different degree
distributions, degree correlations and modular features from non-fractal networks. How our algorithm will perform on
real-world fractal networks may relate to their fractal dimensions and distance between self-similar modules, which still
needs further research.

Many research works make use of the neighborhood information to explore the structural and functional characteristics
of nodes, such as decomposing and identifying the core–periphery structure of the network [42–44], predicting missing
links [45] and devising immunization strategies [46–48]. We hope that the findings in this work will help to improve the
researches by taking a suitable neighborhood range into consideration.
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